Chapter 3

Corrections

Page	Paragraph /Line/ Graph	Mistake	Correction
P. 114	Paragraph 2, the first line	* 2	$x \neq 2$
P. 118	In the note	As $x \rightarrow 1$ We have $(\sin x) / x \rightarrow 0 / 0=1$	\quad As $x \rightarrow 0$ we have $(\sin x) / x \rightarrow 0 / 0$ Then $(\operatorname{Sin} x) / x \rightarrow 1$
P. 134	Theorem 3.2.3:	$\operatorname{Lim} P(x)=P(a$	$\begin{aligned} & \operatorname{Lim} P(x)=P(a) \text { and } \lim \\ & Q(x)=Q(a) \end{aligned}$
P. 140	Graph 3.16		you need to put $g(x)$ the upper graph (in red) and $h(x)$ the lower graph (in yellow)
P. 141	$\begin{gathered} \text { Example } 14 \\ 4^{\text {th }} \text { Line } \end{gathered}$	Now, multiply throughout by x , we get	Now, multiply throughout by x , where $x>=0$ we get
P. 143	Solution $3^{\text {rd }}$ Line	Now, multiply throughout by x , we get	Now, multiply throughout by x , where $x>=0$ we get
P. 149	Example1 Last line	At $\mathrm{a}=0.6$	Last line At a=0.4 and all the following limits must have a $\rightarrow 0.4$
P. 150	$4^{\text {th }}$ line	At a $=0.8$	At $\mathrm{a}=0.6$ and all the following limits must have a $\rightarrow 0.6$
P. 151	Remark	$\begin{aligned} & \text { 3.2.1, 3.2.2, 3.2.3, } \\ & \text { 4.2.4, 3.2.5 and 3.2.6 } \end{aligned}$	$\begin{aligned} & 3.2 .1,3.2 .2,3.2 .3 \\ & 3.2 .4,3.2 .5 \text { and 3.2.6 } \end{aligned}$
P. 153	From the bottom $3^{\text {rd }}$ line	The last limit $\begin{aligned} & \operatorname{Lim} f(x)=\operatorname{Lim}(1-3 x)= \\ & 1-3(2)=-2 \end{aligned}$	$1-3(1)=-2$
P. 161	Example 15	(a) (b) (d) (d) and in the solutions (d)	(a) (b) (c) (d) and in the solutions (d)
P. 165	Example 20 In the Solution The first limit line	$\lim x \rightarrow-\infty$	$\lim x \rightarrow \infty$
P. 174	Notation $4^{\text {th }}$ line	G	Remove the G and put decrease negatively without bonds
P. 175	Example 2 In the question	First limit $x \rightarrow-2^{+}$ Second limit $x \rightarrow-2^{+}$	Second limit $x \rightarrow-2^{-}$

Page	Paragraph /Line/ Graph	Mistake	Correction
P. 178	Note: Line 2	$\mathrm{X}=+-(3 n+1) / 2 \mathrm{Pi}$	$\mathrm{X}=+-(2 \mathrm{n}+1) / 2 \mathrm{Pi}$
P. 183	Example 6 In the question	$\mathrm{F}(\mathrm{x})=1 / \mathrm{x}-1$	$\mathrm{~F}(\mathrm{x})=1 / 1-\mathrm{x}$
P. 187	Example 10 In the question	Discuss the continuity of the function $(\mathrm{x})=$	Discuss the continuity of the function $\mathrm{f}(\mathrm{x})=$
P. 191	Example 19 Solution Second line	Sine f is continuous on $[0,3]$, it is continuous on $[0, \mathrm{~b}]$.	Sine f is continuous on $[0,3]$, it is continuous on $[0, b]$ we should add $0<b<=3$
P. 196	Figure 3.38	On the y -axis $\mathrm{L}+\delta$ and L- δ	On the $\mathrm{Y}-\mathrm{axis}$ $\mathrm{L}+\varepsilon$ and $\mathrm{L}-\varepsilon$

Monia Naghi (:)
Linda Alzaben :

